N ov 2 01 7 The Wiener polarity index of benzenoid systems and nanotubes
نویسنده
چکیده
In this paper, we consider a molecular descriptor called the Wiener polarity index, which is defined as the number of unordered pairs of vertices at distance three in a graph. Molecular descriptors play a fundamental role in chemistry, materials engineering, and in drug design since they can be correlated with a large number of physico-chemical properties of molecules. As the main result, we develop a method for computing the Wiener polarity index for two basic and most commonly studied families of molecular graphs, benzenoid systems and carbon nanotubes. The obtained method is then used to find a closed formula for the Wiener polarity index of any benzenoid system. Moreover, we also compute this index for zig-zag and armchair nanotubes.
منابع مشابه
Hosoya polynomials of random benzenoid chains
Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...
متن کاملWiener Polarity Index of Tensor Product of Graphs
Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. In theoretical chemistry, distance-based molecular structure descriptors are used for modeling physical, pharmacologic, biological and other properties of chemical compounds. The Wiener Polarity index ...
متن کاملThe Generalized Wiener Polarity Index of some Graph Operations
Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.
متن کاملThe Wiener Index and the Szeged Index of Benzenoid Systems in Linear Time
Distance properties of molecular graphs form an important topic in chemical graph theory.1 To justify this statement just recall the famous Wiener index which is also known as the Wiener number. This index is the first2 but also one of the most important topological indices of chemical graphs. Its research is still very active; see recent reviews3,4 and several new results in a volume5 dedicate...
متن کاملDistances in benzenoid systems: Further developments
In this note we present some new results on distances in benzenoids. An algorithm is presented which, for a given benzenoid system G bounded by a simple circuit 2 with n vertices, computes the Wiener index of G in O(n) time. Also we show that benzenoid systems have a convenient dismantling scheme, which can be derived by applying breadth-first search to their dual graphs. Our last result deals ...
متن کامل